Continuum Mechanics Dr. M. Aßmus

Motivation

- we assume a body that is rotated about the e_3 -axis by the angle φ
- the deformation gradient F is then given as follows (in terms of the component matrix w.r.t. an orthonormal basis)

$$F_{ij} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- so F is represented by a versor
- subsequent displacement gradient H = F 1 results $(1 = e_i \otimes e_i)$

$$H_{ij} = \begin{bmatrix} \cos \varphi - 1 & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- in a geometrically linear setting, the linearized and symmetrized strain tensor $m{E} = ext{sym}(m{H})$ is applied

$$oldsymbol{E} = rac{1}{2} \left(oldsymbol{H} + oldsymbol{H}^ op
ight)$$

· in present case, the following results

$$E_{ij} = \begin{bmatrix} \cos \varphi - 1 & 0 & 0 \\ 0 & \cos \varphi - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

the trace of the strain tensor represents the volume change

$$tr(\mathbf{E}) = 2(\cos \varphi - 1)$$

when consulting Hooke's law, stresses T would arise

$$T = \lambda \operatorname{tr}(\boldsymbol{E}) \mathbf{1} + 2\mu \boldsymbol{E}$$

(herein, $\lambda = K - 2/3G$ and $\mu = G$ are material parameters)

• this is not true, of course, since the strain tensor E is only valid for small angles φ , so that the following holds

$$|\varphi| \ll 1$$
 \Rightarrow $\cos \varphi \approx 1$

- if, and only if, this small-angle approximation holds, $E \approx 0$ and ${\rm tr}(E) = 0$ result in present case, consequently no stresses arise
- the geometrically linear theory only applies under the assumption of small deformations and small rotations

1

· for all other cases, a geometrically non-linear approach is therefore necessary